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Abstract—Predicting potential credit default accounts in 

advance is challenging. Traditional statistical techniques typically 

cannot handle large amounts of data and the dynamic nature of 

fraud and humans. To tackle this problem, recent research has 

focused on artificial and computational intelligence based 

approaches. In this work, we present and validate a heuristic 

approach to mine potential default accounts in advance where a 

risk probability is precomputed from all previous data and the risk 

probability for recent transactions are computed as soon they 

happen. Beside our heuristic approach, we also apply a recently 

proposed machine learning approach that has not been applied 

previously on our targeted dataset [15]. As a result, we find that  

these applied approaches outperform existing state-of-the-art 

approaches.  
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I. INTRODUCTION 

In general, we can refer to a customer’s inability to pay, or 
their default on a payment, or personal bankruptcy, all as 
potential issues of non-payment. However, each of these 
scenarios is a result of different circumstances. Sometimes it is 
due to a sudden change in a person’s income source due to job 
loss, health issues, or an inability to work. Sometimes it is a 
deliberate, for instance, when the customer knows that he/she is 
not solvent enough to use a credit card anymore, but still uses it 
until the card is stopped by the bank. In the latter case, it is a type 
of fraud, which is very difficult to predict, and a big issue to 
creditors.  

To address this issue, credit card companies try to predict 
potential default, or assess the risk probability, on a payment in 
advance. From the creditor's side, the earlier the potential default 
accounts are detected the lower the losses [5]. For this reason, an 
effective approach for predicting a potential default account in 
advance is crucial for the creditors if they want to take preventive 
actions. In addition, they could also investigate and help the 
customer by providing necessary suggestions to avoid 
bankruptcy and minimize the loss.  

Analyzing millions of transactions and making a prediction 
based on that is time consuming, resource intensive, and some 
time error prone due to the dynamic variables (e.g., balance limit, 
income, credit score, economic conditions, etc.). Thus, there is a 
need for optimal approaches that can deal with the above 
constraints. In our previous work [3],  we proposed an approach 
that precomputes all previous data (offline data) and calculates a 
score. Subsequently, it waits for a new transaction (online data) 

to occur and calculate another score as soon as the transaction 
occurs. Finally, all scores are combined to make a decision. We 
used the term OLAP data for offline data and OLTP data for 
online data in our previous work [3].The main limitations of the 
previous work was the use of a synthetic dataset and a lack of 
validation of the proposed model using a publicly available, real-
world dataset. Online Analytical Processing (OLAP) systems 
typically use archived historical data over several years from a 
data warehouse to gather business intelligence for decision-
making and forecasting.  On the other hand, Online Transaction 
Processing (OLTP) systems, only analyze records within a short 
window of recent activities - enough to successfully meet the 
requirement of current transactions within a reasonable response 
time [19][3]. 

Currently, a variety of Machine Learning approaches are 
used to detect fraud and predict payment defaults. Some of the 
more common techniques include K Nearest Neighbor, Support 
Vector Machine, Random Forest, Artificial Immune System, 
Meta-Learning, Ontology Graph, Genetic Algorithms, and 
Ensemble approaches. However, a potential approach that has 
not been used frequently in this area is Extremely Random Trees, 
or Extremely Randomized Trees (ET) [20]. This approach came 
about in 2006, and is a tree-based ensemble method for 
supervised classification and regression problems. In Extremely 
Random Trees (ET) randomness goes further than the 
randomness in Random Forest. In Random Forest, the splitting 
attribute is determined by some criteria where the attribute is the 
best to split on that level, whereas in ET the splitting attribute is 
also chosen in an extremely random manner in terms of both 
variable index and splitting value. In the extreme case, this 
algorithm randomly picks a single attribute and cut-point at each 
node, which leads to a totally randomized trees whose structures 
are independent of the target variables values in the learning 
sample [20].  Moreover, in ET, the whole training set is applied 
to train the tree instead of using bagging to produce the training 
set as in Random Forest. As a result, ET gives a better result than 
Random Forest for a particular set of problems. Besides 
accuracy, the main strength of the ET algorithm is its 
computational efficiency and robustness [20]. While ET does 
reduce the variance at the expense of an increase in bias, we will 
use this algorithm as the foundation for our proposed approach.  

The following sections discuss related research, followed by 
our proposed approach.  We then present the data that will be 
used, and our experimental results.  We then conclude with some 
observations and future work. 



II. LITERATURE REVIEW 

The research work of [1][2][3][4][5] are all about personal 
bankruptcy or credit card default on payment prediction and 
detection. In the work of [4], the authors worked on finding 
financial distress from four different summarized credit datasets. 
Bankruptcy prediction and credit scoring were the primary 
indicators of financial distress prediction.  According to the 
authors, a single classifier is not good enough for a classification 
problem of this type. So they present an ensemble approach 
where multiple classifiers are used on the same problem and then 
the result from all classifiers are combined to get the final result, 
and reduce Type I/II errors –  crucial in the financial sector.  For 
their classification ensemble approach, they use four 
approaches: a) majority voting b) bagging c) boosting and 3) 
stacking. The also introduced a new approach called Unanimous 
Voting (UV) where if any of the classifiers says “yes” then it is 
assumed as “yes” whereas in Majority Voting (MV) at least 
(n+1)/2 classifiers need to say “yes” to make the final prediction 
yes. In the end, they are able to reduce the Type II error but 
decrease the overall accuracy.   

In the work of [5], the authors present a system to predict 
personal bankruptcy by mining credit card data. In their 
application, each original attribute is transformed either as: i) a 
binary [good behavior and bad behavior] categorical attribute, or 
ii) a multivalued ordinal [good behavior and graded bad 
behavior] attribute. Consequently, they obtain two types of 
sequences, i.e., binary sequences and ordinal sequences. Later 
they use a clustering technique for discovering useful patterns 
that can help them to identify bad accounts from good accounts. 
Their system performs well, however, they only use a single 
source of data, whereas the bankruptcy prediction systems of 
credit bureaus use multiple data sources related to 
creditworthiness. 

In the work of [1], they compared the accuracy of different 
data mining techniques for predicting the credit card defaulters. 
The dataset used in this research is from the UCI machine 
learning repository which is based on Taiwan’s credit card 
clients default cases [15]. This dataset has 30,000 instances, and 
6626 (22.1%) of these records are default cases. There are 23 
features in this dataset. Some of the features include credit limit, 
gender, marital status, last 6 months bills, last 6 months 
payments, etc. These are labeled data and labeled with 0 (refer 
to non-default) or 1 (refers to default).   From the experiment, 
based on the area ratio in the lift chart on the validation data, 
they ranked the algorithms as follows: artificial neural network, 
classification trees, naïve Bayesian classifiers, K-nearest 
neighbor classifiers, logistic regression, and discriminant 
analysis. In terms of accuracy, K-nearest neighbor demonstrated 
the best performance with an accuracy of 82% on the training 
data and 84% on the validation or test data. To get an actual 
probability of “default” (rather than just a discrete binary result) 
they proposed a novel approach called Sorting Smoothing 
Method (SSM).  

In the work of [2], the authors use the same Taiwan dataset 
[15] as of [1]. However, they applied a different set of algorithms 
and approaches. In this research, they proposed an application of 
online learning for a credit card default detection system that 
achieves real-time model tuning with minimal efforts for 

computations. They mentioned that most of the available 
techniques in this area are based on offline machine learning 
techniques. Their work is the first work in this area that is 
capable of updating a model based on new data in real time. On 
the other hand, traditional algorithms require retraining the 
model even if there is some new data, and the size of the data 
affects the computation time, storage and processing. For the 
purpose of real-time model updating, they use Online Sequential 
Extreme Learning Machine (OS-ELM) and Online Adaptive 
Boosting (Online AdaBoost) methods in their experiment. They 
compared the results from above mentioned two algorithms with 
basic ELM and AdaBoost in terms of training efficiency and 
testing accuracy. In online AdaBoost, the weight for each weak 
leaner and the weight for the new data is updated based on the 
error rate found in each of the iterations. The OS-ELM is based 
on basic ELM which is formed from a single layer feedforward 
network. Along with these algorithms, they also applied some 
other classic algorithms such as KNN, SVM, RF, and NB. 
Although KNN, SVM, and RF have shown higher accuracy, the 
training time was more than 100 times compared to other 
algorithms. They found RF exhibits great performance in terms 
of efficiency and accuracy (81.96%). In the end, both online 
ELM and AdaBoost maintain the accuracy level of other offline 
algorithms, while significantly reducing the training time with 
an improvement of 99% percent. They conclude that the online 
AdaBoost has the best computational efficiency, and the offline 
or classic RF has best predictive accuracy. In other words, 
Online AdaBoost balances relatively better than offline or 
classic RF between computational accuracy and computational 
speed. They mentioned two future directions of this research as 
follows: a) incorporating concept drift to deal with the change of 
new data distributions over time, which may affect the 
effectiveness of the online learning model, and b) sustaining the 
robustness of online learning for a dataset with missing records 
or noise. They also mention that some other online learning 
techniques like Adaptive Bagging could be applied and 
compared in terms of speed, accuracy, stability, and robustness. 

Besides credit card default prediction and detection, there are 
lots of work on different types of credit card fraud detection. 
Some of those are [6], [7], [8], [9], [10], [11], [12], [13], and 
[14], where credit card transaction fraud detection are 
emphasized and surveyed. Most of the transaction fraud is the 
direct result of stolen credit card information.  Some of the 
techniques they used for credit card transaction fraud detection 
are as follows: Artificial Immune System, Meta-Learning, 
Ontology Graph, Genetic Algorithms, etc.  

So, despite the plethora of research being done in the area of 
credit default/fraud detection, little has been reported that 
resolves the issue of detecting default/fraud early in the process. 
In this work, we will focus on detecting default accounts in the 
very early stage of credit analysis towards the discovery of a 
potential default on payment or even bankruptcy.  

III. METHODOLOGY 

We applied two different approaches to the dataset: one for 
comparing results with previous standard machine learning 
approaches, and the other for validating our proposed approach. 
The first approach is the application of different machine 
learning algorithms on the dataset. We call this standard 



approach the Machine Learning Approach. The second approach 
is based on our previous work [3], where two tests are 
performed, what we call a standard test and a customer specific 
test, to mine potential defaulting accounts. We will call this 
second approach our Heuristic Approach.  

The Heuristic Approach predicts the credit default risk in two 
steps. In the first step, we compute a credit default probability 
score from archived transaction history using appropriate 
machine learning algorithms. This score is stored in the database 
and continuously updated as new transactions occur.  In the 
second step, as real-time transactions occur, we apply a heuristic 
(applying a standard test and a customer specific test, explained 
in detail in section V) to compute a risk score. This score is 
combined with the archived score using the equations (1) and (2) 
to compute overall risk probability. 

For the Machine Learning Approach, we experimented with 
various supervised machine learning algorithms to determine the 
best algorithm. Then, for the Heuristic approach  we will take 
the best algorithm found from the Machine Learning Approach 
and apply it only to the offline data to calculate the offline risk 
probability Roffline. And whenever a new transaction occurs, we 
run the two tests (Standard Test, Customer Specific Test) on the 
online data to calculate the online risk probability Ronline.  

Our proposed algorithm RISK shows the steps involved in 
calculating Ronline..The parameters for the algorithm are standard 
rules (SR), customer specific rules (CSR), Feature Scores (FS), 
and a batch of online transactions (T). Details of the rules, rule 
mappings, risk calculation steps, and flowcharts are described in 
detail in our previous work [3]. Each and every transaction is 
passed through the StandardTest function, which returns the 
violated standard rules (if any), which is then passed to the 
CustomerSpecificTest function to find out the valid causes for 
the breaking standard rules. There is a mapping between causes 
and the standard rules. Also different causes carry different 
weights based on the following criteria: 1) the mapping in 
between causes and standard rules, 2) the mapping between 
standard rules and features, and 3) the ranking of associated 
features. We use the term impact coefficient and weight 
interchangeably. To calculate risk probability from online data 
we use the following formula: 

 

R Online  = [ 1 – 
Σ Impact Coefficient ( 𝑋)

Σ Impact Coefficient ( 𝑌)
  ] × 100       

 

Here, X is the set of valid causes for breaking the standard 
rules, and Y is the set of relevant causes (valid or invalid) for 
breaking the standard rules. Some of the use cases of the 
formula are as follows: 1) there is no valid cause for breaking a 

standard rule given X is equal to null and the R Online  becomes 
maximum, 2) there are n related causes and all causes are valid 
given both X and Y are equal and the R Online  becomes zero, 
and 3) there are m valid causes among n related causes given R 

Online  is a value in between maximum and minimum. Thus, our 
proposed RISK algorithm returns the online risk probability 
Ronline for a transaction. 

___________________________________________________ 

      RISK (SR, CSR, FS, T): 

1. for each online transaction t of T 

2.      ViolatedRules  StandardTest(t) 

3.      if count of  ViolatedRules is greater than 0 

4.           Ronline   CustomerSpecificTest (ViolatedRules) 

5.      else 

6.           Ronline   0 

7. return  Ronline 

___________________________________________________ 

 

Finally, the risk probability from both online and offline data 
are combined using a weighted method to see whether the 
account is going to default in the near future.  

IV. DATA 

In this work, we have used the “Taiwan” dataset [15] of 
Taiwan’s credit card clients’ default cases which has 23 features 
and 30,000 instances, out of which 6,626 (22.1%) are default 
cases.  The same dataset has also been used in other research 
work [1][2]. Some of the features of this dataset are credit limit, 
gender, marital status, last 6 months bills, last 6 months 
payments, and last 6 months re-payment status. Records are 
labeled as either 0 (non-default) or 1 (default). Fig. 1 shows a 
snapshot of 5 random records from the dataset. 

As indicated earlier, the Heuristic Approach processes two 
different datasets related to credit card transactions: the offline 
data and the online data. However, one of the issues with 
research in this area is that both offline and online transactional 
data  are not publicly available. Specifically, there are some 
public datasets that contain customer summarized profile 
information and credit information, but not individual credit 
transactions. (i.e., no single publicly available dataset that 
contains both for the same set of customers). In order to tackle 
this issue, and provide a relevant data source for future work in 
this area (something that we will make publicly available after 
publication), we will decompose the Taiwan dataset into both 
offline and online datasets as shown with the examples in Table 
1 and Table 2. 

 

Fig. 1. Taiwan dataset 



TABLE 1. OFFLINE DATASET CREATED FROM TAIWAN DATASET 

account balance

_limit 

sex education marriag

e 

age total_bi

ll 

total_p

ayment 

repay

ment 

default 

4663 50000 2 3 2 23 28718 1028 0 0 

13181 100000 2 3 2 49 17211 2000 0 0 

21600 50000 2 2 2 22 28739 800 0 0 

1589 450000 2 2 2 36 201 3 -1 0 

28731 70000 2 3 1 39 133413 4859 2 0 

 
 

TABLE 2. ONLINE DATASET CREATED FROM TAIWAN DATASET 

tid account amount date type 

53665 23665 660 2015-05-29 pay 

9328 9328 46963 2015-05-14 exp 

37597 7597 3000 2015-05-29 pay 

9495 9495 75007 2015-05-14 exp 

34113 4113 5216 2015-05-29 pay 

 

Initially, from each record (customer) in the Taiwan dataset, 
we created 5 online transactions of type “pay” (payment) from 
PAY_AMT1 to PAY_AMT5 and 5 online transactions of type 
“exp” (expenditure) from BILL_AMT1 to BILL_AMT5. Since 
BILL_AMT is the sum of all individual bills or transactions, we 
divided this BILL_AMT into individual transactions by 
following the data distribution of a real credit card transactions 
dataset. As shown in Table 3, BILL_AMT1 is the total bill and 
PAY_AMT1 is the payment amount for the month of September 
2005, BILL_AMT2 is the total bill and PAY_AMT2 is the 
payment amount for the month of August 2005, and so on, up to 
the oldest month, which in this case is April 2005 (BILL_AMT6 
and PAY_AMT6). So, initially PAY_AMT6 and BILL_AMT6 
go into the total_payment and total_bill for the offline data 
(Table 1). At the end of the month, the total_payment and 
total_bill is updated with that month's total bill (BILL_AMT) 
and total payments (PAY_AMT). 

TABLE 3. MONTH VS FEATURE MAPPING IN TAIWAN DATASET 

Month Feature 

( BILL AMOUNT ) 

Feature 

( PAYMENT AMOUNT ) 

April BILL_AMT6 PAY_AMT6 

May BILL_AMT5 PAY_AMT5 

June BILL_AMT4 PAY_AMT4 

July BILL_AMT3 PAY_AMT3 

August BILL_AMT2 PAY_AMT2 

September BILL_AMT1 PAY_AMT1 

 

As stated previously, BILL_AMT is the summarized 
information of an entire month’s transaction. We then break 
down this BILL_AMT into the individual transactions by 
following the real credit card transaction data distribution of the 
“Spain” dataset [16] used in the work [18]. We then scaled those 
datasets up/down as needed to convert them into the same 
currency scale using the formula below: 

 

𝑉2 =   
(  𝑀𝑎𝑥2 − 𝑀𝑖𝑛2  )   ×   (  𝑉1 − 𝑀𝑖𝑛1 )

(  𝑀𝑎𝑥1 − 𝑀𝑖𝑛1  )
  +   𝑀𝑖𝑛2 

where, V2 = converted value, Max2 = the ceiling of the new 
range, Min2 = the floor of the new range, Max1 = the ceiling of 
the current range, Min1 = the floor of the current range, V1 = the 
value needs to be converted. 

To ensure that a corresponding transaction distribution can 
be followed in the “Spain” dataset for a BILL_AMT in the 
“Taiwan” dataset, we used equal frequency binning to determine 
the ranges under which a monthly bill amount (BILL_AMT) 
must fall into. Equal frequency binning uses an inverse 
cumulative distribution function (ICDF) to calculate the upper 
and lower ranges.  As a result, we came up with on average 
359,583 online transactions per month for the same 30,000 
accounts or records in the original dataset. 

 It should also be noted that another significant result of this 
work is the creation of a dataset for other researchers.  As 
mentioned earlier, public access to credit card summary data and 
credit card transactional data for the same set of customers is 
rare. While it was necessary to create this dataset for our specific 
research purposes, we realize the benefit of making this dataset 
public to the general research community.  

V. EXPERIMENT 

For our experiments, we will use the Python scikit-learn 
library. The following sections describe the experimental setup 
for each of the two approaches that we discussed earlier.  

A. Machine Learning Approach 

We will run different machine learning algorithms on the 
“Taiwan” dataset. The purpose of this test is to evaluate an 
improved approach in terms of the following performance 
evaluation metrics: accuracy, recall, F-score, and precision. We 
chose these metrics for two reasons: 1) these are the metrics 
frequently used in related research, and 2) to compare the results 
with previous research using this Taiwan dataset.   

Some of the algorithms we tried include  K-nearest 
Neighbor, Random Forest, Naïve Bayes, Gradient Boosting, 
Extremely Random Trees (Extra Trees), etc. We also used the k-
fold (k =10) cross-validation technique for the testing/training 
set split and to calculate performance metrics. Default 
parameters for all algorithms (in scikit-learn) were used unless 
otherwise mentioned.  

B. Heuristic Approach 

This approach originated from our previous preliminary 
work using a synthetic dataset [3]. However, in this work, we 
will validate our approach by using the publicly available 
“Taiwan” dataset, and dividing the dataset into offline and online 
datasets. Beside solving the limitations (e.g., lack of validating 
the proposed model using a known and real dataset), we also 
found a better base algorithm (Extremely Random Trees) than 
before that will contribute to the calculation of the offline risk 
probability Roffline  in our Heuristic Approach. We briefly 
reiterate the two tests as discussed in detail in [3]:  

1) Standard Test: The purpose of this test is to identify 
transactions that deviate from the normal behavior and pass 
them to the next test named Customer Specific Test. Here the 
normal behavior refers to the common set of standard rules that 



every good transaction bound to follow. Some of the standard 
rules that we applied to the “Taiwan” dataset include whether 
the minimum due was paid, whether the paid amount was less 
than the bill amount, whether the monthly total bill was greater 
less than balance limit etc.    

2) Customer Specific Test: This test is more customer-
centric rather than the standard rules of Standard Test that are 
applicable to every account in the same way. It takes customer 
specific measures like foreign national, job change, address 
change, promotion, salary increase, etc. into consideration. The 
purpose of this test is to recognize possible causes for which a 
transaction is unable to satisfy a standard rule in the Standard 
Test. In the experiment with the “Taiwan”  dataset, this test was 
not completely in effect due to the lack of necessary information 
that can be extracted from the dataset.  

As a consequence of the above tests, an online risk 

probability Ronline is returned from the RISK algorithm explained 

earlier in section III. Details of this procedure are described in 

our previous work [3]. The total risk probability for a 

transaction comes from both online and offline data. So, the 

equation of total risk probability is as follows: 

 
R Total  = R Online  + R Offline      (1) 

Here, 

R Total  = Overall risk probability from both online and offline 
data. 

R Online = Risk probability from online data 

R Offline = Risk probability from offline data 

Initially, we get the risk probability from offline data (R 

Offline) for corresponding accounts from the value of the risk 
probability distribution value of the classification results on 
offline data. So,  for the first transaction of the account, the R 

Offline = probability of it being defaulted comes from the 
probability distribution of the classification outcome. Then, for 
the subsequent transaction N, the Roffline is the value of total risk 
probability of from the previous transaction. 

 

R Offline of transaction N = R Total of transaction N-1 

 

Thus, Roffline is updated in two situations: a) At the end of a 
transaction that has a positive Ronline; and b) At the end of the 
month to synchronize with possible profile changes (i.e., credit 
limit increase).  That is the reason why we created 5 batches from 
5 months of data and ran them chronologically to accommodate 
the profile change at the end of each month, which also leads to 
better results (Table 4 and Fig. 4).  

Furthermore, the risk probability from the online data and 
offline data may carry different weights. For example, giving 
half of the weight (i.e., 50%) to offline data and remaining half 
of the weight (i.e., 50%) to online data might provide better 
mining results for a particular company or dataset. On the other 
hand, for another company or dataset, a different combination of 
offline vs online risk probability weights might be better. So, the 
modified version of (1) for a total risk probability calculation is: 

 

R Total  = λ R Online  +  (1- λ) R Offline              (2) 

 

where λ is the risk factor. 

 For our experiments, we have found that between 45% and 
50% for the online data weight, with the remaining % for the 
offline data weight, provides the best results. In other words, if  
λ = .45 or .5 then 1- λ = .55 or .5 accordingly. As a result, we 
have used λ = .5 for our experiments. 

VI. RESULTS 

Running the different algorithms on the “Taiwan” dataset we 
discover that the Extremely Random Trees outperforms all the 
standard machine learning algorithms and notable previous 
works [1][2] on this dataset in terms of Accuracy, Precision, 
Recall and F-score. Detail scores are shown in Fig. 2.  The 
performance gain is mainly due to the fact that the tree-based 
approach works very well for problems where the number of 
features is moderate, data is properly labeled, and there are few 
missing values. To the best of our knowledge, the Extremely 
Random Trees algorithm has not been used on this dataset 
before.  

 

 

 Fig. 3 shows the comparison of performance using the 
Machine Learning Approach (i.e., applying only the best 
classifier, Extremely Random Trees on the dataset without any 
other test like Standard Test or Customer Specific Test), the 
Heuristic Approach, and the State-of-the-art. So far, we have 
seen a maximum accuracy of   84% (82% on training data) and 
maximum recall of 65.54% among all previous research work on 
this “Taiwan” dataset, while the Heuristic Approach has an 
accuracy of 93.14% and the Machine Learning Approach has an 
accuracy of 95.84%.  We also realize a better recall percentage. 

Fig. 2 Performance by algorithms using Machine Learning Approach 



In fraud or risk, detection recall is very important because we 
don’t want to miss fraud or risks. However, maximizing recall 
introduces an increase of False Positives, which is expected in 
risk analytics. 

 

 

 Recall that we divided the dataset into offline and online 
datasets, as mentioned in the Data section (Section IV), 
consisting of bill and payment data for 6 months. Data from the 
first month was included in the summarized fields (i.e., total_bill 
and total_payment), and for the remaining 5 months, we made 5 
batches of offline data and 5 batches of online data. We then ran 
offline batch 1 and online batch 1 serially, followed by offline 
batch 2 and online batch 2, and so on, up to batch 5, which leads 
to comparing the results from the newly created offline (Table 
1) and online (Table 2) dataset from the “Taiwan” dataset with 
the results of the Machine Learning Approach, as shown in Fig 
3. 

TABLE 4. BATCH WISE PERFORMANCE METRICS 

 

Batch Accuracy Precision Recall F-

score 

Computation 

Time (offline) 

Computation 

Time (online) 

1 0.94 0.92 0.82 0.87 12.23 152.54 

2 0.94 0.88 0.86 0.87 9.14 109.35 

3 0.94 0.84 0.89 0.87 13.04 86.90 

4 0.94 0.82 0.91 0.86 11.59 89.74 

5 0.93 0.80 0.92 0.86 10.21 133.58 

 

 

 

 From Table 4 and Fig. 4 we can see that recall increases as 
the number of batches increase. This implies that the percentage 
of targeted (i.e., defaulting) accounts increases (linearly) with 
the number of batches (i.e., as more information about the 
customer is known). 

 The computation time for both the Machine Learning 
Approach and calculating Roffline using Extremely Random Trees 
for 30,000 accounts was on average 11.24 seconds using a 
commodity laptop with an Intel core i7 processor and 12 GB 
RAM. Though Naïve Bayes is a bit faster than Extremely 
Random Trees, its performance in terms of accuracy, precision, 
recall, and F-score are not. For the online data computation, it 
took on average of 114.42 seconds for a batch size of on average 
of 359,583 transactions. For our interpretation of results, we 
created only one batch per month. However, there is nothing in 
our proposed approach that requires batches of this size, and any 
number of transactions per month for online data could be used, 
which could lead to batches with a much smaller number of 
transactions with  less computation time. To verify this, we tried 
with batches of different sizes (reducing the batch size by half 
each time) and we found that  the computation time for the online 
data reduces almost linearly with the reduction of  the number of 
transactions per batch. From Fig. 5, we can see that the trendline 
(dotted line) is almost in line with the actual line. This 
demonstrates how fast this approach can process the online 
transaction and give a decision in near real-time.  

 

 

 

 Another mentionable contribution of this approach is the 
early detection. While there is ~10% improvement in recall from 
the first month (batch 1) to the fifth month (batch 5) – from a 
recall of 81.96% to 92.15% - it is clear that we can achieve a 
good recall very early in the process, enabling a real-time system 
to detect potential credit card default. 

VII. CONCLUSION 

In this research, we have used two approaches, Machine 
Learning and Heuristic, for mining default accounts from a well-
known dataset. The Heuristic Approach came from our previous 
work [3], that we validated with actual data in this work. The 
main idea of the Heuristic Approach is to calculate the risk factor 
from the recent transactional data (online) and combine the 
results with pre-computed risk factors from historical (offline) 
data in an efficient way. To make the process efficient, we only 

Fig. 5 Batch size vs computation time 

Fig. 3 Performance comparison of different approaches 

Fig. 4. Batch wise performance metrics 



have to process a transaction when it initially occurs, and then 
the combined risk factor is carried forward for future 
transactions. We showed this approach can predict a default 
account significantly in advance, which is very cost efficient for 
the funding organization. In addition, we demonstrated that the 
performance of both approaches outperforms reported 
approaches using the same data set [1][2]. Our future plan is to 
improve the Heuristic Approach so that it outperforms the 
Machine Learning Approach in terms of all performance 
metrics, and validate that with multiple datasets. Other plans 
include: testing and validating the model with multiple real 
datasets, standardizing the online vs offline risk weight ratio (the 
value of λ) with multiple datasets of credit defaults, as well as 
handling concept drift to deal with change in the distribution of 
the online data over time which may affect the effectiveness of 
the approach. 
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